
Case Study: 
Growing Software Company

A dev team at a small software company was 
wrapping up a rescue project for a failing 
application: they arrived at the painful conclusion 
that they needed to re-write it. Team leadership 
had to reconcile two contradictory needs: 
moving fast while keeping things clean. For 
speed, they needed to empower several squads to 
make strategic development and architecture 
decisions quickly. At the same time, they needed 
to keep the architecture solid to avoid tanking 
this kind of critical application again. 

Overview

“Before CodeLogic, when we’d overhaul a shared library, it would always be a mess. 
We’d miss things that would only hit us when building other modules, or even in testing. 

It was difficult to know when we were truly done. Now it’s so much easier to see the 
‘blast radius’ of a change and plan accordingly” 

Approach

For the new effort, the team chose to implement the CodeLogic software intelligence platform. The lead 
architect regularly reviewed CodeLogic’s dependency and complexity insights. If the data access layer 
showed inappropriate coupling across the system, he’d work with the team to keep things clean. As 
methods got long or overly complex, the team would refactor. When similar integrations diverged on 
which API endpoints they used, the team leads could be brought together briefly to decide on the right 
path and move forward with more clarity and confidence. (continued)

Highlight

After throwing out a whole codebase, 
this dev team decreased triage time 
by 53% and established a continuous 
flow that allows them to move fast and 
deliver predictably while ensuring that 
debilitating technical debt never 
swallows up productivity — or their 
codebase — ever again. 

Continuous 
Scanning

Application 
Dashboard

IDE
Integration

https://codelogic.com?utm_source=case+study+pdf&utm_medium=case-study&utm_campaign=cs-growing-software-company


Over the course of a few months, the frequency of interventions decreased. The developers learned that 
taking on technical debt to get a task done a little quicker resulted in extra work when being asked to 
clean up that debt. While occasionally taking on tech debt is the right decision, the team learned to 
consciously make that decision together rather than individually.

02

www.codelogic.com

Results

Unlike architects who draw diagrams and hope for 
the best, this team’s lead architect used the 
CodeLogic Application Dashboard to identify bad 
patterns as they emerged and address them 
quickly.

“Some of this we should have caught in code 
review, but many of our issues looked fine 
commit to commit. Only when you’re able to see 
the full picture across libraries and services do 
these issues become obvious.” - Lead Architect

Using CodeLogic when planning bigger changes
also helped the team execute those changes better. “Before CodeLogic, when we’d overhaul a shared 
library, it would always be a mess. We’d miss things that would only hit us when building other modules, 
or even in testing. It was difficult to know when we were truly done. Now it’s so much easier to see the 
‘blast radius’ of a change and plan accordingly” observed a lead developer. 

Too often, smaller changes to a shared library still caused issues. While checking CodeLogic before 
making a change would have prevented those issues, adopting the new habit of checking the platform 
was difficult for many team members. Following a retrospective, the team decided to add CodeLogic’s
integration to their IDE: JetBrains IntelliJ. Now, when the team checked references in the IDE as part of 
their existing workflow, CodeLogic provided additional telemetry within the IDE. When an interesting 
usage surfaced, they could slide into the CodeLogic WebUI to learn more.

As one developer put it, “Accessing CodeLogic within IntelliJ means we don’t have to break our focus to 
find the information we need – We’re already there.”

17% increase in dev 
team productivity 

53% decrease in
weekly triage mtgs

Highlight

www.codelogic.com

https://codelogic.com?utm_source=case+study+pdf&utm_medium=case-study&utm_campaign=cs-growing-software-company


With CodeLogic now part of their continuous workflow, the source of defects dried up, saving significant 
development and testing time, and shortening weekly triage meetings by 53 percent. Because those 
errors often impacted people on other squads, reducing them helped build confidence across teams and 
keep the larger organization harmonious and happy.

For the executive overseeing the team, the CodeLogic benefits are clear, “Day-in and day-out, we’re 
saving 15% of the engineering team’s time. But the real benefit is that we’re keeping the code clean 
enough to go fast, deliver predictably and never throw out a whole codebase again.”

Today, this organization is still moving quickly. The foundations of good architecture have been well 
maintained. They have avoided creating the sort of creeping technical debt that swallows productivity 
and leaves everyone miserable. Instead, the teams are empowered to make good decisions, with the right 
information at their fingertips.

03

Conclusion

The CodeLogic IntelliJ integration identifies usages that the native IDE typically does not detect. 

www.codelogic.com

https://codelogic.com?utm_source=case+study+pdf&utm_medium=case-study&utm_campaign=cs-growing-software-company

